Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions at scale, we need to also use observational data —something Ecologists tend to view with great scepticism. The major challenge using observational data for causal inference is confounding variables: variables affecting both a causal variable and response of interest. Unmeasured confounders—known or unknown—lead to statistical bias, creating spurious correlations and masking true causal relationships. To combat this omitted variable bias, other disciplines have developed rigorous approaches for causal inference from observational data that flexibly control for broad suites of confounding variables. We show how ecologists can harness some of these methods—causal diagrams to identify confounders coupled with nested sampling and statistical designs—to reduce risks of omitted variable bias. Using an example of estimating warming effects on snails, we show how current methods in Ecology (e.g., mixed models) produce incorrect inferences due to omitted variable bias and how alternative methods can eliminate it, improving causal inferences with weaker assumptions. Our goal is to expand tools for causal inference using observational and imperfect experimental data in Ecology.more » « lessFree, publicly-accessible full text available January 21, 2026
-
ABSTRACT Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel observational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discussing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key challenges; the application of causal inference in experimental and quasi‐experimental study designs; appropriate interpretation of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements and trade‐offs between internal and external validity posed by different designs. We highlight that these designs generally prioritise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate causal inference with synthesis science and meta‐analysis and expand the spatiotemporal scales at which causal inference is possible. We advocate for ecology as a field to collectively define best practices for causal inference.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
As climate change increasingly affects biodiversity and ecosystem services, a key challenge in ecology is accurate attribution of these impacts. Though experimental studies have greatly advanced our understanding of climate change impacts on ecological systems, experimental results are difficult to generalize to real-world scenarios. To better capture realized impacts, ecologists can use observational data. Disentangling cause and effect using observational data, however, requires careful research design. Here we describe advances in causal inference that can improve climate change attribution in observational settings. Our framework includes five steps: 1) describe the theoretical foundation, 2) choose appropriate observational data sets, 3) design a causal inference analysis, 4) estimate a counterfactual scenario, and 5) evaluate assumptions and results using robustness checks. We then demonstrate this framework using a case study focused on detecting climate change impacts on whitebark pine growth in California’s Sierra Nevada. We conclude with a discussion of challenges and frontiers in ecological climate change attribution. Our aim is to provide an accessible foundation for applying observational causal inference to climate change attribution in ecology.more » « lessFree, publicly-accessible full text available December 6, 2025
-
Ecologists seek to understand the intermediary ecological processes through which changes in one attribute in a system affect other attributes. Yet, quantifying the causal effects of these mediating processes in ecological systems is challenging. Researchers must define what they mean by a “mediated effect”, determine what assumptions are required to estimate mediation effects without bias, and assess whether these assumptions are credible for a study. To address these challenges, scholars in fields outside of ecology have made significant advances in mediation analysis over the past three decades. Here, we bring these advances to the attention of ecologists, for whom understanding mediating processes and deriving causal inferences are important for testing theory and developing resource management and conservation strategies. To illustrate both the challenges and the advances in quantifying mediation effects, we use a hypothetical ecological study. With this study, we show how common research designs used in ecology to detect and quantify mediation effects may have biases and how these biases can be addressed through alternative designs. Throughout the review, we highlight how causal claims rely on causal assumptions, and we illustrate how different designs or definitions of mediation effects can relax some of these assumptions. In contrast to statistical assumptions, causal assumptions are not verifiable from data, so we also describe procedures that researchers can use to assess the sensitivity of a study’s results to potential violations of its causal assumptions. The advances in causal mediation analyses reviewed herein will provide ecological researchers with approaches to clearly communicate the causal assumptions necessary for valid inferences and examine potential violations to these assumptions, which will enable rigorous and reproducible explanations of intermediary processes in ecology.more » « less
-
Abstract Relationships between plant biodiversity and productivity are highly variable across studies in managed grasslands, partly because of the challenge of accounting for confounding's and reciprocal relationships between biodiversity and productivity in observational data collected at a single point in time. Identifying causal effects in the presence of these challenges requires new analytical approaches and repeated observations to determine the temporal ordering of effects.Though rarely available, data collected at multiple time points within a growing season can help to disentangle the effects of biodiversity on productivity and vice versa. Here we advance this understanding using seasonal grassland surveys from 150 managed grassland sites repeated over 2 years, along with statistical methods that are relatively new in ecology, that aim to infer causal relationships from observational data. We compare our approach to common methods used in ecology, that is, mixed‐effect models, and to analyses that use observations from only one point in time within the growing seasons.We find that mixed models overestimated the effect of biodiversity on productivity by two standard errors as compared to our main models, which find no evidence for a strong positive effect. For the effect of productivity on biodiversity we found a negative effect using mixed models which was highly sensitive to the time at which the data was collected within the growing season. In contrast, our main models found no evidence for an effect. Conventional models overestimated the effects between biodiversity and productivity, likely due to confounding variables.Synthesis. Understanding the biodiversity‐productivity relationships is a focal topic in ecology, but unravelling their reciprocal nature remains challenging. We demonstrate that higher‐resolution longitudinal data along with methods to control for a broader suite of confounding variables can be used to resolve reciprocal relationships. We highlight future data needs and methods that can help us to resolve biodiversity‐productivity relationships, crucial for reconciling a long‐running debate in ecology and ultimately, to understand how biodiversity and ecosystem functioning respond to global change.more » « less
-
Risks in globally interconnected socio-environmental systems are complex: trade, migration, climate phenomena such as El Niño, and other processes can both redistribute and modulate risks. Here we argue that risk must be investigated not only as a product of these systems but also as a force that rewires them through, for example, supply diversification, trade policy, insurance and other contracting, or cooperation. Two key questions arise: how do individuals and institutions perceive risks in these global, complex systems, and how do attempts to govern risks change how the systems function? We identify several areas for interdisciplinary research to address these questions.more » « less
An official website of the United States government
